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Abstract
A simple correction to the results of the work by Chen Y F and Huang K F
(2003 J. Phys. A: Math. Gen. 36 7751) is proposed and its consequences are
briefly discussed.

PACS numbers: 03.65.Vf, 03.65.Ge, 03.65.Fd

(Some figures in this article are in colour only in the electronic version)

In the recent paper [1] to this journal, Chen and Huang studied, among other things,
a connection between classical Lissajous figures and quantum probability distributions
concentrated on the figures. To this end, they used the SU(2) coherent state for two non-
interacting harmonic oscillators
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where ωx = ωq,ωy = ωp,X = √
2h̄/(mxωx), Y = √

2h̄/(myωy), τ is a complex, continuous
parameter, τ = A exp(iφ) and �pK,q(N−K) is a product of the well-known eigensolutions for
one-dimensional harmonic oscillators in x and y variables. The value of N plays here the role
of the principal quantum number for the whole system.

Authors of the work [1] claim they have guessed the exact quantum–classical connection
for coprime p and q values in the form
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where the expectation values of x2 and y2 were calculated in the state (1) and are
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Chen and Huang wrote [1] ‘ . . . it should be remarked that the parameters in equation (2),
which gives a connection between the wave pattern of a coherent state and classical Lissajous
figures, are deduced from numerical calculations. It is difficult for us to give an analytical
derivation for the expression of equation (2) at present’.

We shall show in this comment that the Lissajous figures obtained from equations (2)
do not cover the apogees of the quantum probability distribution
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, in
contrast to what is said in [1]. We are able to prove the statement formally for the case of
p : q = 1 : 1. For other relatively prime values of p and q we are able to do that only
numerically.

Now, for simplicity, we take X2 = Y 2 = 2. Then, for p = q = 1, the sum over K in
equation (1) can be performed exactly [2], and we get
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Furthermore, for the choice τ = ±i (A = 1, φ = ±π/2), we can find from the properties of
Hermite’s polynomials that[

(1 + τ 2)N/2HN

(
y + xτ√

1 + τ 2

)]
τ=±i

= 2N(y ± ix)N . (5)

With this formula in mind, we have
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N (x, y, τ = ±i)

∣∣2 = (x2 + y2)N

πN !
exp[−(x2 + y2)] (6)

and, it is easy to prove that the maximum of the distribution lies on the circle x2 +y2 = N . For
the maximum, we have
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∣∣2 = NN e−N/(πN !) which, after using the Stirling’s formula

N ! ∼ NN e−N
√

2πN , decays as
∣∣�1,1

N

∣∣2 ∼ (π
√

2πN)−1. Meanwhile, from the Chen and
Huang’s guessed equations (2), we will get x2 + y2 = N + 1. Though the difference first of all
is well pronounced for low values of N, and practically plays no role for very high values, we
may conclude that equations (2) do not give any exact connection between the classical figure
(equations (2)) and the quantum state (equation (1)).

The corrected correspondence equations are supposed to be

x(t) =
√

2〈x2〉 − h̄/(mxωx) cos(qωt − φ/p), y(t) =
√

2〈y2〉 − h̄/(myωy) cos(pωt).

(7)

When p : q = 1 : 1 and τ = ±i, we will obviously get for h̄/(mxωx) = h̄/(myωy) = 1
a circle of radius

√
N , as it should be. For other combinations of coprime p and q, more

complicated Lissajous figures appear, and the advantage of equations (7) over (2) can only
be observed in detailed numerical tests. It follows from our tests that the curves calculated
from equations (7) run along the apogees of the distribution
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, and those
calculated from equations (2), are moved slightly away of them. With growing values of N,
the difference becomes very small and in the Bohr’s limit (N � 1), tends to zero.

A numerical example illustrating this point is given in figures 1 and 2 for N = 2 and
N = 10, respectively. The Chen–Huang Lissajous trajectory of equations (2) (dotted) is
compared with the proposed here corrected one from equations (7) (full line). As we can see,
in each case, the latter curve runs exactly along the highest values of the quantum probability
density whereas the former one is displaced beyond the values. The effect of our correction
vanishes for higher values of the quantum number N. The tendency is visible in figure 2.
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Figure 1. A comparison between |�p,q

N (x, y, X, Y, τ)|2 and the classical Lissajous figures from
equations (2) (dotted) and equations (7) (full line) for p = 2, q = 1 with τ = 1(A = 1, φ =
0), h̄/(mxωx) = h̄/(myωy) = 1 and N = 2.

Figure 2. As in figure 1 but for N = 10.

Generally, finding formally exact close relations between the classical Lissajous figures
and their corresponding quantum probability distributions remain still as an unsolved problem.
It is very important for the quantum–classical correspondence since the formation of the
Lissajous wave patterns in microchip laser resonators is at present a subject of intensive
experimental studies [3–5].
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